Artwork for podcast My AP Biology Thoughts
The Impact of Temperature and pH on Enzymes
Episode 466th April 2021 • My AP Biology Thoughts • Hopewell Valley Student Publications Network
00:00:00 00:06:42

Share Episode

Shownotes

My AP Biology Thoughts

Unit 1 Episode #46

Welcome to My AP Biology Thoughts podcast, my name is Nidhi and I am your host for episode 46 called Unit 1 The Impact of Temperature and pH on enzymes. Today we will be discussing what an enzyme is and how the pH and temperature of the environment affects the enzyme and its substrate.

Segment 1: Introduction to The Impact of Temperature and pH on enzymes

An enzyme is a protein or a RNA molecule that acts as a catalyst in chemical reactions, helping to reduce the activation energy needed for the reaction to occur. Often, this speeds up the rate of reaction. Enzymes are not changed or consumed by the reactions they catalyse and as a result can be reused. Enzymes are typically named after the molecules they react with, which is called the substrate, and they end with the suffix ‘-ase’. The active site is the region on the surface of the enzyme which binds to the substrate molecule. The active site and the substrate complement each other in terms of both shape and chemical properties. Enzymes are selective and each enzyme only speeds up a specific reaction. pH is a scale from 1-14 used to specify how acidic or how basic a solution is. A number lower than the neutral 7 is considered an acid while a number higher than 7 is a base. With enzymes, changes in pH can affect active sites by changing its shape or charge and making it harder for substrates to bind. Small changes in pH above or below the Optimum for the enzyme do not cause a permanent change to the enzyme, since the bonds can be reformed. However, extreme changes in pH can cause enzymes to Denature and permanently lose their function. The optimum pH, or the pH where the enzyme is most active, depends on where it normally works. For example, enzymes in the small intestine have an optimum pH of about 7.5, but stomach enzymes have an optimum pH of about 2. Low temperatures result in insufficient thermal energy for the activation of a reaction to proceed. Increasing the temperature will increase the speed and motion of both enzyme and substrate, resulting in higher enzyme activity since a higher kinetic energy will result in more frequent collisions between the enzymes and substrates. At an optimal temperature for the enzyme, the rate of activity will be at its peak. Higher temperatures will cause enzyme stability to decrease, because the thermal energy disrupts the enzyme’s hydrogen bonds. This causes the enzyme’s active site to lose its shape, resulting in denaturation. 

Segment 2: Example of The Impact of Temperature and pH on enzymes

Trypsin and pepsin are both enzymes in the digestive system which break protein chains in food into smaller peptide chains or into individual amino acids. Pepsin works in the highly acidic conditions of the stomach. It has an optimum pH of about 1.5. On the other hand, trypsin works in the small intestine, parts of which have a pH of around 7.5. If at a pH of around 7, a substrate attaches itself to the enzyme via two ionic bonds, then a change in pH can definitely make it difficult for the substrate to bond to the enzyme. In an example enzyme, the groups allowing ionic bonding are caused by the transfer of a hydrogen ion from a COOH group in the side chain of one amino acid to an -NH2 group in the side chain of another. At a lower pH, the -COO- will pick up a hydrogen ion and with this an ionic bond can no longer form between the substrate and the enzyme. If those bonds were necessary to attach the substrate and activate it, then at this lower pH, the enzyme won't work. With a pH higher than 7, the NH3+ will lose a hydrogen ion and again an ionic bond can’t form. The tertiary structure of the protein is also in part held together by ionic bonds. At very high or very low pH's, these bonds within the enzyme can be disrupted, and it can lose its shape and if it loses its shape, the active site can be lost completely. In the human body the optimum temperature for an enzyme is around 37 degrees celsius. However, some enzymes work better at lower temperatures and some work well at higher temperatures. For instance, animals from the Arctic have enzymes adapted to have lower optimum temperatures while animals in desert climates have enzymes adapted to higher temperatures. While higher temperatures do increase the activity of enzymes and the rate of reactions, temperatures above 40 degrees Celsius, will start to break them down. 

Segment 3: Digging Deeper into The Impact of Temperature and pH on enzymes

The impact of temperature and pH on enzymes can be connected to the greater picture of macromolecules. Proteins are made of units called amino acids, and in enzymes that are proteins, the active site gets its properties from the amino acids it's built out of. These amino acids may have side chains that are large or small, acidic or basic, hydrophilic or hydrophobic. The set of amino acids found in the active site, along with their positions in 3D space, give the active site a very specific size, shape, and chemical behavior. Due to these amino acids, an enzyme's active site is uniquely suited to bind to a particular target, the enzyme's substrate, and help them undergo a chemical reaction. Dehydration and hydrolysis reactions are catalyzed by specific enzymes and a specific enzyme breaks down each macromolecule. For instance, amylase, sucrase, lactase, or maltase break down carbohydrates. Enzymes called proteases, such as pepsin and peptidase, and hydrochloric acid break down proteins. Lipases break down lipids. These broken down macromolecules provide energy for cellular activities.

Thank you for listening to this episode of My AP Biology Thoughts. For more student-ran podcasts and digital content, make sure that you visit www.hvspn.com. See you next time!

Music Credits:

  • “Ice Flow” Kevin MacLeod (incompetech.com)
  • Licensed under Creative Commons: By Attribution 4.0 License
  • http://creativecommons.org/licenses/by/4.0/

Subscribe to our Podcast

Connect with us on Social Media

Links

Chapters

Video

More from YouTube