Welcome to PICU Doc On Call, A Podcast Dedicated to Current and Aspiring Intensivists.
I'm Pradip Kama and I'm Rahul Damania, a third-year PICU fellow. I’m Kate Phelps, a second-year PICU fellow and we are all coming to you from Children's Healthcare of Atlanta, Emory University School of Medicine, joining Pradip and Rahul today. Welcome to our episode, where will be discussing rhabdomyolysis and associated acute kidney injury in the ICU.
Rahul: Here's the case, a 7-year-old female presents to the ED with three days of fever, poor PO, and diffuse myalgia. In the ED, her vital signs are T 39.1C, HR 139, BP 82/44, RR 32. She is pale and diaphoretic, complaining weakly about how much her legs hurt. Her parents note that she has not been peeing very well since yesterday, and when she does pee it is “very concentrated, almost brown.” She’s also been spending all her time on the couch and has asked to be carried to the bathroom when she does need to go.
An IV is placed by the emergency room team, and she is given a fluid bolus, acetaminophen, and initial labs are drawn (CMP, CBC, RSV/Flu swab) before she is admitted to the PICU. In the PICU, her fever is better and her vitals have improved to T 37.7, HR 119, BP 115/70, and RR 25. Her respiratory swab has just resulted positive for Influenza A. Further labs are sent, including creatine kinase (CK), coagulation studies, and a urinalysis. Labs are notable for K 3.9, Bicarb 22, BUN 15, Cr 0.8, and CK 5768 IU/L. Her urinalysis is notable for 1 WBC, 2 RBC, +3 blood, negative nitrites, and leukocyte esterase.
Kate: To summarize key elements from this case, this patient has:
Before we get into this episode — let's create a mental framework for this episode — we will dissect our case by highlighting key H&P components, visit a differential diagnosis, pivot to speaking about pathophysiology, and finally, speak about management!
Kate: Let’s dive further into rhabdomyolysis!
Rhabdomyolysis affects over 25,000 adults and children every year. While toxins (including prescription drugs, alcohol, and illicit drugs) and trauma are two common causes of rhabdo in adults (and teens), infections, especially viruses, are the most common cause in young children. Influenza, EBV, and CMV are three most commonly reported.
What’s the pathophysiology of Rhabdomyolysis?
Rhabdomyolysis is the injury of skeletal muscle, which leads to cellular damage, apoptosis, and necrosis. As a result, skeletal muscle cells lyse and release their intracellular contents. Insult directly to the cell membrane and ATP-depletion are two mechanisms that can start the chain reaction leading to this cell death.
When the cell membrane itself is injured (as may happen in trauma or crush injury, metabolic conditions, or toxins), ionized calcium can freely enter the cell, leading to activation of proteases and phospholipases, which further injure the cell membrane, as well as mitochondria. As a result, the cell undergoes apoptosis and necrosis. When there is an ATP-depletion, pumps on the cell membrane important for maintaining sodium and calcium homeostasis between the intracellular and extracellular components become compromised. Intracellular calcium levels build, and the same process of cell and mitochondrial injury leads to apoptosis and necrosis.
To summarize, Rhabdomyolysis is an index example of cell adaptations, injury, and death. The key here is cell membrane damage which leads to downstream apoptosis.
Absolutely Rahul, the danger of this is that other intracellular contents are released into the extracellular space, including myoglobin, potassium, uric acid, intracellular enzymes, and many other things. Creatine kinase, or CK, released from cells is relatively indicative of rhabdo. Though no consensus criteria for rhabdo exist, most experts agree that serum CK level >1000 IU/L combined with the history and physical findings we will discuss is consistent with rhabdomyolysis.
This is especially important as there is are a multitude of pathologies that can cause a mild, transient increase in CK levels usually < 1000.
Pradip: One of the most common and most dangerous complications of rhabdomyolysis is acute kidney injury. While more common in adults, AKI occurs in ~5% of children with rhabdomyolysis. Let’s take a brief moment to discuss rhabdomyolysis-induced, or more specifically myoglobin-induced, acute kidney injury. While the mechanisms for myoglobin injury to the nephron aren’t entirely clear, most experts believe one of three things or, more likely, a combination of three things occur. Rahul, can you walk us through those?
Rahul: Sure, I’d love to!
Kate: Whew! That is a lot! Let’s take a break and review what we just learned:
Rhabdomyolysis is the injury of skeletal muscle leading to calcium influx into cells, which cascades into eventual apoptosis and necrosis. This leads to a massive release of intracellular components that upsets the overall homeostasis of the intra- and extracellular spaces. Myoglobin released from cells can directly injure the kidneys, leading to AKI. Potassium and hydrogen proton leakage, combined with AKI, can lead to life-threatening hyperkalemia and acidosis. CK is a serum measurement that can help confirm the diagnosis of rhabdomyolysis.
Rahul: Fun Fact Myoglobinuria usually only occurs in rhabdomyolysis (BUT not all rhabdomyolysis has myoglobinuria as it only spills out in urine above certain serum concentrations). Myoglobinuria can be inferred from a urine dipstick when there is moderate or large blood but few or no red blood cells. This is because the dipstick test for blood is non-specific for hemoglobin vs myoglobin! Myoglobin is also the reason the urine turns reddish-brown or “tea-colored.”
Pradip: Let’s change gears and talk about management. Kate, can you tell us about the management of rhabdomyolysis?
Rahul: Remember, symptomatic hyperkalemia as evidenced by EKG changes, including wide QRS, absent P waves, or arrhythmias, including ventricular fibrillation, should be treated immediately. IV calcium administration will stabilize the cardiac membrane. Bicarbonate, insulin + glucose, and albuterol can quickly but only temporarily shift potassium into cells. Kayexalate and diuretics can remove potassium from the body.
We should note here that underlying metabolic myopathies can cause recurrent, mild rhabdomyolysis, though these children do not usually need critical care unless the cause for an exacerbation is sepsis or other potentially life-threatening illness!
Pradip: This concludes our episode on rhabdomyolysis. We hope you found value in our short, case-based podcast. We welcome you to share your feedback, subscribe & place a review on our podcast! Please visit our website picudoconcall.org which showcases our episodes as well as our Doc on Call management cards. PICU Doc on Call is co-hosted by myself Dr. Pradip Kamat and Dr. Rahul Damania — with special guest Kate Phelps today. Stay tuned for our next episode! Thank you!